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Outline

Ï A glance at QRT of coherence
• Mathematical framework for superposition principle
• Many models for free operations

Ï Structure of Incoherent operations
• General quantum operations
• Number of Kraus Operators and its importance

Ï Qubit incoherent channel
• Improved bound on # Kraus operators for IO
• Exact number for SIO
• Achievable region and collapse of hierarchies

Ï Application to quantum thermodyanmics



Coherence at a glance

Many model of Coherence theory [Streltsov et al., Rev. Mod. Phys. (2017)]

https://doi.org/10.1103/RevModPhys.89.041003


Resource Theory of Quantum Coherence

IO theory of coherence [Baumgratz et al., PRL (2014)]

b Free (Incoherent) states: Diagonal states δ=∑
δi |i 〉〈i |, for a

preferred/chosen o.n.b. {|i 〉}. This is not a shortcoming!
b Free (Incoherent) operations: Λ is incoherent iff there is a Kraus

decomposition Λ= {Kn} such that KnδK †
n is diagonal for all δ,n.

b Maximally coherent state: |Φd 〉 = 1p
d

∑ |i 〉.
• Any ρ ∈B(H d ) can be created from |Φd 〉:

|Φd 〉
only Λ∈I−−−−−−−−−−−→

with certainty
ρ.

• |Φd 〉 allows to implement arbitrary unitary U ∈ SU (d).
• Existence of |Φd 〉 allows all kind of concepts related to manipulation
of resource e.g., formation, cost, distillation etc.

http://dx.doi.org/10.1103/PhysRevLett.113.140401
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Quantum Operations on a single system

• Are described by Maps: ρ′ = ε(ρ)

• Two simplest examples: Unitary Evolution ρ 7→UρU †,
Measurement ρ 7→ ρm := KmρK †

m/Tr[KmρK †
m].

• Quantum operations = Quantum channels = CPTP maps

ρ′ = ε(ρ)

= TrE
[
U

(
ρ⊗|0〉E 〈0|

)
U †]

=∑
m
〈m|U (

ρ⊗|0〉E 〈0|
)
U †|m〉

=∑
m

KmρK †
m , Km = 〈m|U |0〉 ∈B(H S ).

• Km ’s are known as Kraus operators, completely describe the action of
the map/channel.



• The {Km}s is in general not unique: Two sets {Km} and {Ln}
generate the same channel iff

Km =∑
n

Umn Ln , ∀m,n.

Here Umn is a unitary matrix of order max{m,n}. This follows
essentially from the same result for ensemble:

{pi , |ψi 〉} = {q j , |φ j 〉} iff p
pi |ψi 〉 =

∑
j

Ui j
√

q j |φ j 〉

• This implies: If ρ ∈B(H d ), #(Km) ≤ d 2.
• Thus a qubit channel can be described by at most 4 Kraus operators.



• However, we don’t know which U will give us incoherent Λ.

Question: Characterize U and E so that the resulting {Kn} is incoherent

• Alternative way is to find the minimal description of Λ in terms of
{Kn}.

Question: How many Kraus operators are needed to write Λd ∈I?

Ï Important for simulating Λ.
Ï On qubit level, allows to visualize all possible Λ[ρ].

• We have only partial answers :
• General upper bounds for IO and SIO
• Exact results for qubits only
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Upper bound from Choi-Jamiołkowski+Caratheodory
Upper bound on #Kruas operators for IO channel

Any incoherent operation acting on a Hilbert (state) space of dimension d
admits a decomposition with at most d 4 +1 incoherent Kraus operators.

• Choi-Jamiołkowski isomorphism between a quantum operation Λ
and the corresponding Choi state :

ρΛ = (Λ⊗ 1)(Φ+
d ), Φ+

d = d−1
d−1∑

i , j=0
|i , i 〉〈 j , j |, dim(Φ+

d ) = d 2.

The rank of the Choi state is the Kraus rank, which is the smallest
number of (not necessarily incoherent) Kraus operators.

• Consider the operator

M = (K ⊗ 1)Φ+
d (K † ⊗ 1) with any incoherent K .

For any incoherent operation Λ, the corresponding Choi state ρΛ
belongs to the convex hull of the operators M . Applying
Caratheodory on M gives the upper bound.



Qubit IO channel
#Kraus operators ≤ 5 for IO

Any qubit IO channel Λ admits a decomposition with at most 5
incoherent Kraus operators. A canonical choice of the operators is
given by the set{(

a1 b1

0 0

)
,

(
0 0

a2 b2

)
,

(
a3 0
0 b3

)
,

(
0 b4

a4 0

)
,

(
a5 0
0 0

)}
,

where ai can be chosen ≥ 0, while bi ∈C. Moreover, it holds that∑5
i=1 a2

i =
∑4

j=1 |b j |2 = 1 and a1b1 +a2b2 = 0.

• The incoherent condition implies that the Kraus operators can have
at most non-zero element in a column.

• Group them into four categories:

K I =
{(∗ ∗

0 0

)}
, K I I =

{(∗ 0
0 ∗

)}
,

K I I I =
{(

0 0
∗ ∗

)}
, K IV =

{(
0 ∗
∗ 0

)}
.



• The unitary equivalence Li =∑
j Ui , j K j reduces them to eight

K I =
{(∗ 0

0 0

)
,

(∗ ∗
0 0

)}
, K I I =

{(∗ 0
0 0

)
,

(∗ 0
0 ∗

)}
,

K I I I =
{(

0 0
∗ 0

)
,

(
0 0
∗ ∗

)}
, K IV =

{(
0 0
∗ 0

)
,

(
0 ∗
∗ 0

)}
.

• Gathering altogether leads to six Kraus operators:{(∗ ∗
0 0

)
,

(
0 0
∗ ∗

)
,

(∗ 0
0 ∗

)
,

(
0 ∗
∗ 0

)
,

(∗ 0
0 0

)
,

(
0 0
∗ 0

)}
.

• Among these consider the following 3 operators

K1 =
(

0 0
a1 b1

)
, K2 =

(
a2 0
0 b2

)
, K3 =

(
0 0

a3 0

)
.

The unitary

U =
 l a∗

1 0 l a∗
3

mb∗
1 |a3|2 m

(|a1|2 +|a3|2
)

b∗
2 −ma∗

3 b∗
1 a1

na3b2 −na3b1 −na1b2





transforms those to

L1 =
(

0 0
∗ ∗

)
, L2 =

(∗ 0
0 ∗

)
, L3 =

(∗ 0
0 0

)
.

• Thus, altogether those reduces to the following five{(∗ ∗
0 0

)
,

(
0 0
∗ ∗

)
,

(∗ 0
0 ∗

)
,

(
0 ∗
∗ 0

)
,

(∗ 0
0 0

)}
.

The canonical parameterization follows from the completeness
relation

∑
K †

i .Ki = 1.

Update: A generic qubit IO Λ can be decomposed into four Kraus
operators. We are trying to prove that four is indeed the optimal
number.
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Exact number for qubit SIO is four

• A canonical form for any qubit SIO is given by{(
a1 0
0 b1

)
,

(
0 b2

a2 0

)
,

(
a3 0
0 0

)
,

(
0 0

a4 0

)}
,

where ai ≥ 0 and
∑4

i=1 a2
i =

∑2
j=1 |b j |2 = 1.

Bound for higher (d-) dimensional channels

• IO: # ≤ d(d d −1)/(d −1). Better than d 4 +1 only for d ≤ 3.
• SIO: # ≤ ∑d

k=1 d !/(k −1)!. Better than d 4 +1 only for d ≤ 5.

• (S)IO: # ≥ d 2 as the set of standard matrix units are linearly
independent and forms an (S)IO.
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Application: Achievable region for qubit
SIO=IO=MIO
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Figure: Achievable region for single-qubit SIO, IO, and MIO. Colored areas
show the projection of the achievable region in the x-z plane for initial Bloch
vectors (0.5,0,0.5)T [blue], (−0.8,0,−0.6)T [green], and (1,0,0)T [red]. Note that
the last two states are pure. The magenta line corresponds to the achievable
region of an incoherent state with Bloch vector (0,0,0.65)T .



Quantum Thermodynamics: Gibbs-preserving SIO
• Any p|0〉〈0|+ (1−p)|1〉〈1| ∈I can be interpreted as a Gibbs state
τ= e−βH /Tr[e−βH ], for a suitable inverse temperature β= 1

kT and
Hamiltonian H which is diagonal,

p = e−βE0

e−βE0 +e−βE1
.

• Thermal operations are Gibbs-preserving: Λ[τ] = τ, but can create
coherence.
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Figure: Achievable region [blue area] of single-qubit SIO which preserve the
state t= (0,0,1) [left figure] and t= (0,0,−1) [right figure]. The initial state has
the Bloch vector r = (0.5,0,0.5)T [blue dot], and the corresponding Bloch vector
t is shown as a green dot.



Conclusion and Outlook

• On qubit level, any SIO or a generic IO can be decomposed into four
Kraus operators. This significantly reduces the number of
parameters to simulate those channels, as well as to find the exact
achievable regions for a given input states.

• The bound on number of Kraus operators derived from
combinatorial arguments gives better result in small dimension only.
There must be some further unitary reductions.

• We conjecture that every qubit IO could be decomposed into four
Kraus operators.

• The restrictions on Kraus operators to define free operations is too
strong which has lead to so many RTQCs. There is probably a
deeper question involved: if the Krus operators are restricted to have
a (sparse) pattern, then how to efficiently bound their number? How
to physically implement those operations?
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