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Quantum coherence is an essential feature of quantum mechanics which is responsidle for the
departure between the classical and quantum workd. The recently estabiished resource theory of

quantum coherence studies possible quantum technological appications of quantum coherence, and

mitations that arise if one is lacking the abiity to establish superpositions. An important open problem

n this context I a simple characterization for Incoherent operations, consttuted by al possible m
transformations allowed within the resource theory of coherence. In this Letter, we contribute 10 such a

characterization by proving several upper bounds on the maximum number of incoherent Kraus

operators in a general incoherent operation. For a single QubIL, we show that the number of incoherent

Kraus operators is not more than 5, and it remains an open question f this number can be reduced to PHYSICAL
4. The presented resuls are aiso relevant for quantum thermodynamics, as we demonstrate by REVIEW
introducing the class of Gibbs-preserving strictly incoherent operations, and solving the cormesponding JOURNALS

mixed-state conversion problem for a single Qubit

P

o)



v

v

v

v

Outline

A glance at QRT of coherence
e Mathematical framework for superposition principle
e Many models for free operations

Structure of Incoherent operations
 General quantum operations
e Number of Kraus Operators and its importance

Qubit incoherent channel
« Improved bound on # Kraus operators for 10
e Exact number for SIO
o Achievable region and collapse of hierarchies

Application to quantum thermodyanmics



Coherence at a glance

Many model of Coherence theory [Streltsov et al., Rev. Mod. Phys. (2017)]

1 2 3 94 5 b
MIO (Aberg, 2006) yes yes yes yes yes
[0 (Baumgratz er al., 2014; Winter yes yes yes yes yes
and Yang, 2016)
SIO  (Winter and Yang, 2016; Yadin yes yes yes yes ?
etal.,2016)
DIO (Chitambar and Gour, 2016b; yes yes yes yes ?
Marvian and Spekkens, 2016)
TIO (Marvian and Spekkens, 2016; yes yes yes no ?
Marvian e al., 2016)
PIO  (Chitambar and Gour, 2016b) yes yes yes no ?
GIO yes yes no no no

de Vic and Streltsov, 20
FIO (de Vicente and Streltsov 17) yes yes mo no 7

Table 11 List of alternative frameworks of coherence with respect to
our criteria 1-6 provided in the text.


https://doi.org/10.1103/RevModPhys.89.041003

Resource Theory of Quantum Coherence

|O theory of coherence [Baumgratz et al., PRL (2014)]

@ Free (Incoherent) states: Diagonal states § =Y 6;|i)(il, for a
preferred/chosen o.n.b. {|i)}. This is not a shortcoming!

@ Free (Incoherent) operations: A is incoherent iff there is a Kraus
decomposition A = {K},} such that KnéK,‘; is diagonal for all &, n.

@& Maximally coherent state: |®;) = \/LEZIi).
o Any p € B(7#%) can be created from [Dy):

only Aey
Dg) —————
with certainty

e |®,;) allows to implement arbitrary unitary U € SU(d).
e Existence of |®,;) allows all kind of concepts related to manipulation
of resource e.g., formation, cost, distillation etc.


http://dx.doi.org/10.1103/PhysRevLett.113.140401
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Quantum Operations on a single system

o Are described by Maps: p’ =¢(p)

e Two simplest examples: Unitary Evolution p — UpUT,
Measurement p — p, := KmpKL/Tr[KmpKL].

e Quantum operations = Quantum channels = CPTP maps

p'=e(p)
=Trg [U(p ®10)£(01) U]
=Y (mlU(p®10)5¢0))U'|m)

=Y KmpK}, Kpn=(m|U|0)e BH5).
m

e K;,'s are known as Kraus operators, completely describe the action of
the map/channel.



e The {Kj,}s is in general not unique: Two sets {K;;} and {L,}
generate the same channel iff

Kn = Z UnnlLln, VYm,n.

n

Here U,,, is a unitary matrix of order max{m, n}. This follows
essentially from the same result for ensemble:

i lwidy =1q;,1p)} iff pilwiy =) Uij\/q;1¢))
j

e This implies: If pe%(iﬁd), #(Kpy) < d?.
e Thus a qubit channel can be described by at most 4 Kraus operators.



e However, we don’t know which U will give us incoherent A.

Question: Characterize U and E so that the resulting {K,} is incoherent.
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» On qubit level, allows to visualize all possible A[p].




e However, we don’t know which U will give us incoherent A.

Question: Characterize U and E so that the resulting {K,} is incoherent.

e Alternative way is to find the minimal description of A in terms of
{Kn}-

Question: How many Kraus operators are needed to write Ay € .7 I

» Important for simulating A.
» On qubit level, allows to visualize all possible A[p].

e We have only partial answers :

e General upper bounds for 10 and SIO
e Exact results for qubits only



Upper bound from Choi-Jamiotkowski+Caratheodory

Upper bound on #Kruas operators for 10 channel

Any incoherent operation acting on a Hilbert (state) space of dimension d
admits a decomposition with at most d* + 1 incoherent Kraus operators.

o Choi-Jamiotkowski isomorphism between a quantum operation A
and the corresponding Choi state :

d-1
pa=AN@), @h=d' Y i,i)(j,jl, dim@}) = d*
i,j=0

The rank of the Choi state is the Kraus rank, which is the smallest
number of (not necessarily incoherent) Kraus operators.

o Consider the operator
M=(K® 1])<I>;(KJr ® 1) with any incoherent K.

For any incoherent operation A, the corresponding Choi state py
belongs to the convex hull of the operators M. Applying
Caratheodory on M gives the upper bound.



Qubit 1O channel

#Kraus operators <5 for 10

Any qubit 10 channel A admits a decomposition with at most 5
incoherent Kraus operators. A canonical choice of the operators is
given by the set

ar b1y (0 0)(az O0) [0 b4\ (as O

0 0)’ ay bz {0 bg ’ ags 0)’'\o0 o)f’
where a; can be chosen =0, while b; € C. Moreover, it holds that
Y2, ar= Z‘;:l |bjl*=1 and a1 by + azb, =0.

e The incoherent condition implies that the Kraus operators can have
at most non-zero element in a column.
o Group them into four categories:

ool g el )
N A !



e The unitary equivalence L; =} ; U; ;K reduces them to eight

7_Jf+x O k% i J[*x O * 0
<o oo ot = ={lo ol )
IIT _ 0 0 0 0 IV _ 0 0 0 *
e (| S (A ¢
o Gathering altogether leads to six Kraus operators:
= %) (0 0) (* O\ (0 =) (+* Oy (O O
0 0\« =/7\0 =)'\ 0J'\0 0)'\x 0"
e Among these consider the following 3 operators
(0 0 (a © (0 0
Kl_(“l bl)’KZ_( 0 bz)'Kg_(% 0)'

The unitary

la} 0 la;
U=| mbilasl* m(la1l?+lasl?)b; —-ma; b} a
naghg —na3b1 —na; bg



transforms those to
0 0 * 0 * 0
=30 )G 2 (G o)

e Thus, altogether those reduces to the following five

= %\ (0 0) (* O0) (0 =*)(+ O

0 0)'\x =)’{0 =/'{«x 0)'\0 0)f°
The canonical parameterization follows from the completeness
relation ZK;.K,- =1



transforms those to
0 0 * 0 * 0
=30 )G 2 (G o)

e Thus, altogether those reduces to the following five

= %\ (0 0) (* O0) (0 =*)(+ O

0 0)'\x =)’{0 =/'{«x 0)'\0 0)f°
The canonical parameterization follows from the completeness
relation ZKZ.T.K,- =1

Update: A generic qubit IO A can be decomposed into four Kraus
operators. We are trying to prove that four is indeed the optimal
number.




Exact number for qubit SIO is four.
e A canonical form for any qubit SIO is given by
a 0 0 by (as O 0 O
Obl’dg 0)’'\0 0’(140’

where a; 20 and ¥j_, af =¥%_, |b;jI* = 1.



Exact number for qubit SIO is four.

e A canonical form for any qubit SIO is given by

{5 sble SHE o}fa olf

where a; 20 and ¥j_, af =¥%_, |b;jI* = 1.

Bound for higher (d-) dimensional channels

o 10: # < d(d%-1)/(d-1). Better than d*+1 only for d <3.
e SIO: # < Z‘]le d!/(k—1)!. Better than d*+1 only for d <5.

e (S)IO: # = d? as the set of standard matrix units are linearly
independent and forms an (S)IO.



Application: Achievable region for qubit

S1I0=10=MIO '

-1.0 -0.5 0.0 0.5 1.0

Figure: Achievable region for single-qubit SI1O, 10, and MIO. Colored areas
show the projection of the achievable region in the x-z plane for initial Bloch
vectors (0.5,0,0.5 7 [blue], (—0.8,0,—0.6)T [green], and (1,0,0)7 [red]. Note that
the last two states are pure. The magenta line corresponds to the achievable
region of an incoherent state with Bloch vector (0,0,0.65)7 .



Quantum Thermodynamics: Gibbs-preserving SIO
o Any pl0){0]+ (1 — p)|1){1| € .# can be interpreted as a Gibbs state
1 =e PH/Tr[e PH], for a suitable inverse temperature ff = = and
Hamiltonian H which is diagonal,
efﬁEO
p= e~ BEo 4 ¢—BE1’
e Thermal operations are Gibbs-preserving: A[r] =7, but can create
coherence.

Figure: Achievable region [blue area] of single-qubit SIO which preserve the
state t = (0,0,1) [left figure] and t=(0,0,-1) [right figure]. The initial state has
the Bloch vector r = (0.5,0,0.5)T [blue dot], and the corresponding Bloch vector
t is shown as a green dot.



Conclusion and Outlook

On qubit level, any SIO or a generic IO can be decomposed into four
Kraus operators. This significantly reduces the number of
parameters to simulate those channels, as well as to find the exact
achievable regions for a given input states.

The bound on number of Kraus operators derived from
combinatorial arguments gives better result in small dimension only.
There must be some further unitary reductions.

We conjecture that every qubit 10 could be decomposed into four
Kraus operators.

The restrictions on Kraus operators to define free operations is too
strong which has lead to so many RTQCs. There is probably a
deeper question involved: if the Krus operators are restricted to have
a (sparse) pattern, then how to efficiently bound their number? How
to physically implement those operations?
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